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Abstract. The electronic states of a finite crystal are studied using Goodwin’s model of a tight-
binding linear chain of N one-level atoms with nearest-neighbour overlap. Using a transfer matrix
approach we obtain the explicit form of the secular equation which correctly yields N eigenvalues in
the interval (0, π) of wavenumber q, unlike Goodwin’s equation which involves spurious solutions
at q = 0 and q = π . We present a new general analysis of bulk- and surface-state eigenvalues as a
function of the parameter ε0/γ describing the difference (ε0) of Coulomb integrals for surface and
bulk atoms relative to the overlap integral γ . We identify four distinct domains of values of |ε0/γ |
in three of which one or two surface states of different origins exist, which we determine explicitly.
Our discussion is valid for both signs of ε0/γ and differs considerably in detail from Goodwin’s
analysis. In particular, it does not require distinct analyses for chains with even and odd numbers
of sites.

1. Introduction

The general properties of electronic surface states in crystals derived for simple models in the
1930s [1–6] are the basis for the more realistic studies of such states which have appeared
since: their energy levels lie within the forbidden gaps and they have an imaginary component
of the wavevector perpendicular to the boundary, which determines the spatial decay of the
wavefunction inside the crystal. A surface-state wavefunction also decays exponentially in
free space, in contrast to conventional Bloch states whose wavefunctions extend throughout
the crystal but vanish essentially outside. Surface states owe their existence to the deviation
of the one-electron potential near the surface from its form deeper inside the crystal which, of
course, also perturbs the Bloch-like extended states. The general properties of surface states
have been established in two basic approximations for crystal electronic structure, namely the
nearly free-electron [3,4] and the tight-binding [5,6] approximations. Physically, the binding
of an electron at a surface may be visualized as arising from a repeated process whereby
an electron wave scattered by a hard-wall potential supposed to mimic the surface is totally
reflected by the periodic one-electron potential deeper inside the crystal.

This paper concerns Goodwin’s pioneering work on the tight-binding approach to
electronic surface states in crystals [5, 6]. In reference [5], Goodwin studied a model of a
finite linear chain consisting of N identical equally spaced one-level atoms. In reference [6]
he extended his work on finite linear chains to the study of surface states in a cubic crystal
slab consisting of N infinite atomic layers and, furthermore, he considered semi-infinite linear
chains in the framework of non-degenerate as well as degenerate two-band electronic models.
Goodwin’s calculations for crystals in two-band models have been further generalized by
Artmann [7] and the criteria for the existence of surface states in various lattices, using his
approach, have been elaborated on by Baldock [8]. The continuing relevance of Goodwin’s
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tight-binding studies of surface states is demonstrated by their fundamental role in two
important reviews [9, 10] as well as e.g. by a more recent realistic study of surface and bulk
electronic states at high-symmetry points of the two-dimensional Brillouin zone of semi-infinite
crystals [11].

By reanalysing Goodwin’s tight-binding model for the electronic eigenstates in a finite
linear chain using a transfer matrix approach [12], we have recently discovered an inconsistency
in his work, namely the occurrence of eigenvalues corresponding to the exact band edges of an
infinite chain. Our treatment resolves this inconsistency. Furthermore, a new analysis of the
secular equation for the eigenvalues of the chain has led us to a more detailed and satisfactory
picture of the properties of surface states in Goodwin’s model. Unlike Goodwin’s discussion,
the present one is valid for both signs of the difference between Coulomb integrals for surface
and bulk atoms and does not require distinct analyses for even and odd N . In view of the
importance of Goodwin’s work [5, 6] in the surface physics literature and, in particular, its
pedagogical value, it seems useful to present our complementary results, which is the object
of the following three sections.

2. Electronic states in a linear tight-binding chain

In Goodwin’s model the electronic states for a chain of N one-level atoms at a, 2a, . . . , Na

(with lattice parameter a = 1) are determined by the set of difference equations

an+1 + an−1 +
ε

γ
an = 0 n = 2, 3, . . . , N − 1 (1)

a2 +
(ε − ε0)

γ
a1 = 0 (2)

aN−1 +
(ε − ε0)

γ
aN = 0 (3)

where

ε = E − E0 + α (4)

ε0 = α − α′. (5)

The eigenfunction corresponding to the energy E is expanded in terms of atomic s states of
energy E0 centred at sites n, with amplitudes {. . . , an, . . .}. As is necessary for the existence
of surface states (see section 1), one assumes different values of the Coulomb integrals for
atoms situated inside (α) and at the ends of the chain (α′). Finally γ denotes the unperturbed
nearest-neighbour overlap integral.

As mentioned in section 1, we obtain the energy eigenvalues E and the corresponding
amplitudes an(E) in (1)–(3) using a transfer matrix, namely the 2 × 2 unimodular matrix

T̂ =
( −ε/γ −1

1 0

)
(6)

which allows us to rewrite (1) as(
an+1

an

)
= T̂

(
an

an−1

)
n = 2, 3, . . . , N − 1. (7)

Iteration of (7) in terms of fixed values a1 and a2 for the amplitudes at sites 1 and 2 yields(
an+1

an

)
= T̂ n−1

(
a2

a1

)
n = 2, 3, . . . , N − 1. (8)
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The secular equation giving the allowed energy eigenvalues then follows by combining (8) for
n = N − 1 with (2) and (3) which yields (with T̂ij the ij -element of T̂ )

(T̂ N−2)21 − γ

ε − ε0
(T̂ N−2)22 = − (ε − ε0)

γ
(T̂ N−2)11 + (T̂ N−2)12. (9)

On the other hand, the amplitude at site n is given by

an

a1
= − (ε − ε0)

γ
(T̂ n−2)11 + (T̂ n−2)12 n = 2, 3, . . . , N. (10)

The explicit calculation of the elements of T̂ m, m = n − 2 or N − 2, in (9) and (10) proceeds
as follows. We first find the eigenvalues λ1 and λ2 of T̂ :

λ1,2 = −1

2

(
ε

γ
±

√(
ε

γ

)2

− 4

)
. (11)

This expression simplifies to

λ1,2 = e±iq (12)

on putting

ε = −2γ cos q (13)

where q is either real or a complex parameter of the form

q = kπ + iκ k = 0, 1, 2, . . . (14)

since ε defined in (4) is real. The matrix Û which diagonalizes the transfer matrix T̂ is then

Û =
(

eiq e−iq

1 1

)
with Û−1 = 1

2i sin q

(
1 −e−iq

−1 eiq

)
. (15)

Since Û−1T̂ Û is diagonal, (Û−1T̂ Û )ij = λiδij , i = 1, 2, we obtain from (13) and (15)

T̂ m = Û (Û−1T̂ Û )mÛ−1 = 1

sin q

(
sin(m + 1)q − sin mq

sin mq − sin(m − 1)q

)
. (16)

Finally, on inserting the elements of (16) for n = N − 2 in (9) we get

1

sin q

[(
ε − ε0

γ

)2

sin(N − 1)q + 2

(
ε − ε0

γ

)
sin(N − 2)q + sin(N − 3)q

]
= 0 (17)

which is the secular equation for the allowed values of q giving the quantized energy levels of
the chain,

E = E0 − α − 2γ cos q. (18)

Similarly we obtain from (10)

an = 1

sin q

[
sin nq +

ε0

γ
sin(n − 1)q

]
a1 n = 2, 3, . . . , N. (19)

By simple algebra one verifies that (17) coincides with the secular equation obtained by
Goodwin (equation (13) of reference [5]) up to the overall factor 1/sin q, noting that Goodwin
uses the definition ε = 2γ cos q instead of (13). Similarly, the expression (19) for the amplitude
an when re-expressed in terms of imaginary exponentials, i.e.

an = 1

2i sin q

[(
1 +

ε0

γ
e−iq

)
einq −

(
1 +

ε0

γ
eiq

)
e−inq

]
n = 2, 3, . . . , N (20)

differs from the corresponding expressions (10) and (12) of [5] in terms of constants A and
B by the presence of the additional factor 1/sin q. The effects of the factor 1/sin q in (17)
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and (19) are the following. On the one hand, it ensures that the secular equation (17) is free
of the spurious solutions q = 0 and q = π corresponding to the band-edge eigenvalues for
an infinite chain obtained by Goodwin [5]. On the other hand, it implies that the amplitudes
(19) and (20) are finite for q ⇀ 0 and q → π , while Goodwin’s amplitudes vanish in these
limits. We recall that Goodwin used this property of his amplitudes an as a physical argument
for excluding his spurious solution q = 0 (and q = π ) of the secular equation.

3. Detailed analysis of eigenvalues

As indicated above, we wish to present a more general and detailed analysis of the roots of the
secular equation (17) than that given by Goodwin [5]. In particular, we shall derive various
threshold values of ε0/γ for the appearance of surface states and discuss the number and the
properties of these states between the successive thresholds.

We find that a very useful way of visualizing the bulk- and surface-state eigenvalues of
the chain results from transforming (17) into the equivalent form (with t = ε0/γ )

[(2 cos q + t)2 + 1] cos q − 2(2 cos q + t)

1 − (2 cos q + t)2
= sin q cot(N − 2)q (21)

using (13).
In the interval (0, π ) the function g(q) ≡ sin q cot(N − 2)q on the r.h.s. of (21) has

N − 2 branches defined in the N − 2 intervals (0, π/(N − 2)) (‘0-branch’), (π/(N − 2),
2π/(N − 2)), . . . , (nπ/(N − 2), (n + 1)π/(N − 2)), . . . , ((N − 3)π/(N − 2), π) (‘π -
branch’), respectively. In the intervals (nπ/(N − 2), (n + 1)π/(N − 2)), n �= 0, N − 3,
it varies from ∞ at nπ/(N − 2) + 0+ (here 0+ denotes a positive infinitesimal) to −∞ at
(n + 1)π/(N − 2) − 0+, while the ‘0-branch’ decreases from a maximum value of (N − 2)−1

at q = 0 ((dg/dq)|0 = 0, (d2g/dq2)|0 < 0) towards −∞ at q = π/(N − 2) − 0+ and the
‘π -branch’ increases from a minimum ((d2g/dq2)|π > 0) of value −(N − 2)−1 at q = π to
∞ at q = (N − 3)π/(N − 2) + 0+.

On the other hand, in the interval (0, π ), the function

f (q) ≡ {[(2 cos q + t)2 + 1] cos q − 2(2 cos q + t)}[1 − (2 cos q + t)2]−1

on the l.h.s. of (21) has two real poles given by 2 cos q ≡ 2 cos q± = −t ± 1 for −1 < t < 1,
a single real pole (q−) for −3 < t < −1 and a single real pole (q+) for 1 < t < 3, and, finally,
no poles for t < −3 and for t > 3. Thus, in the case where two real poles exist, f (q) has
three branches. The branch to the left of the lowest pole increases from the value

f (0) = − t + 1

t + 3
(22)

at q = 0 to ∞ at the pole; the branch to the right of the upper pole increases from −∞ to the
value

f (π) = t − 1

t − 3
(23)

at q = π ; the branch between the two poles increases from −∞ at the lower pole to ∞ at the
upper one. The cases where f (q) has only one pole differ from the previous case in that the
middle branch is absent.

The solutions of (21) for real q correspond to the intersection points of the functions f (q)

and g(q). Clearly, the function f (q) intersects each of the N − 4 interior branches (i.e. those
other than the 0- and π -branches) of g(q) at least once, except for accidental values of ε0/γ

for which a pole of f (q) coincides with a pole of g(q). For the sake of brevity, we shall
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omit discussing the case of such special values of (ε0/γ ) in the following. Consider now the
conditions under which the 0- and π -branches of g(q) are intersected by a branch of f (q)

situated to the left of the lower pole (or of the single pole in the case of a one-pole f (q)) and
to the right of the upper pole, respectively, or by the continuous function f (q) in the zero-pole
case. From the properties of g(q), it follows that for f (q) to intersect the 0-branch of g(q) it
is sufficient that

f (0) < g(0) = 1

N − 2
since f (q) varies much more slowly than g(q) over the interval (0, π/(N − 2)) for N  1. It
follows that a real root for q exists in the interval 0 < q < π/(N −2) for all positive t ≡ ε0/γ

(including ε0 = 0) and for negative values such that

ε0

γ
> − N + 1

N − 1
or

ε0

γ
< −3.

Similarly we find that existence of a real root of (21) in the interval ((N − 3)π/(N − 2), π)

requires

f (π) > g(π) = − 1

N − 2
which, by using (23), is seen to be satisfied for all negative ε0/γ and for positive values such
that

ε0

γ
<

N + 1

N − 1
or

ε0

γ
> 3.

Using the above properties of the functions f (q) and g(q) in (21), we are now able to
discuss the solutions of this equation in various domains of the parameter −∞ < ε0/γ < ∞.

First we find that in the domain

−1 <
ε0

γ
< 1 (24)

and, in particular, for ε0 = 0, equation (21) has N real-q roots. Indeed, since f (q) has two
poles in the domain (24) it intersects each of the N − 2 branches of g(q) once except the two
particular branches whose domains, (nπ/(N − 2), (n + 1)π/(N − 2)), are crossing a pole
of f (q), which are seen to be intersected twice by a branch of f (q). The N real roots in
the domain (24) correspond to Bloch-like extended (bulk) states which are only weakly or
moderately perturbed by the effect of the difference of Coulomb integrals for surface and bulk
atoms.

Consider now the case where f (q) has a single pole. This case arises firstly for negative
t = −1 − 0+ for which −t + 1 = 2 + 0+, so the pole q+ → 0 ceases to exist. With the
disappearance of the q+-pole, the branch of f (q) to the left of q+ also disappears and hence
so does the root corresponding to its intersection with the 0-branch of g(q). Clearly, the
disappearance of this real root of (21) near q = 0 is associated with the occurrence of a
corresponding imaginary root q = iκ (since cos q → cosh κ � 1) which will be discussed
further, below. Secondly, when t approaches unity the q−-pole of f (q) near q = π disappears
and with it the real root of (21) associated with the intersection of the branch of f (q) to the
right of q− with the π -branch of g(q). Again, for t = 1 + 0+ this real root near q = π has
been replaced by a complex root of the form q = π + iκ (cos q → − cosh κ � −1).

Within the domain −3 < ε0/γ < −1 and 1 < ε0/γ < 3 where f (q) has only one pole,
we now distinguish the two subdomains:

− N + 1

N − 1
<

ε0

γ
< −1 and 1 <

ε0

γ
<

N + 1

N − 1
(25)
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and

−3 <
ε0

γ
< − N + 1

N − 1
and

N + 1

N − 1
<

ε0

γ
< 3 (26)

respectively.
In the domain (25), all N − 2 branches of g(q) are intersected once by a branch of f (q)

except the particular branch whose domain crosses the pole of f (q) which is intersected twice.
This yields N −1 real-q roots which together with the complex root which has appeared at the
thresholds ε0/γ = ±1 correspond to N − 1 bulk eigenstates and a single surface eigenstate
for the chain in the domain (25).

On the other hand, in the domain (26), two real roots of (21) which existed in the domain
(24) have disappeared, namely one root (near q = 0 for ε0/γ < 0 and near q = π for
ε0/γ > 0) corresponding to the intersection with a branch of g(q) whose domain was
crossing the pole of f (q) having disappeared, and another real root (near q = 0 or near
q = π ) due to the intersection of f (q) with the 0- or with the π -branch of g(q) which
existed for values ε0/γ > −(N + 1)/(N − 1) and ε0/γ < (N + 1)/(N − 1), respectively.
The disappearance of a q ⇀ 0 real root for ε0/γ = −(N + 1)/(N − 1) and of a q → π

root for ε0/γ = (N + 1)/(N − 1) is associated with the appearance of complex roots q = iκ
and q = π + iκ at ε0/γ = −(N + 1)/(N − 1) − 0+ and at ε0/γ = (N + 1)/(N − 1) + 0+,
respectively. The N roots of (21) in the domain (26) thus include N − 2 bulk-state roots and
two surface-state roots of distinct origin both emanating from q → 0 roots or both emanating
from q ⇀ π roots of (21).

Finally, in the domain

ε0

γ
< −3 or

ε0

γ
> 3 (27)

the two real poles of f (q) which existed in the domain (24) have disappeared. Indeed, the poles
q− and q+ which also existed in the domain (26) for ε0/γ < 0 and ε0/γ > 0, respectively,
disappeared when crossing the boundaries ε0/γ = ±3. In this case, the N roots of (21) are
composed of the real roots arising from the intersection of the N − 2 individual branches of
g(q) with the continuous function f (q) and of two complex surface-state roots in each one
of the regions (27), which replace the two additional real-q roots associated with the poles of
f (q) in the domain (24), as discussed above.

We now turn to the properties of the surface eigenstates corresponding to the complex-q
roots obtained in the domains (25)–(27) where |ε0/γ | > 1. We have shown above that the two
surface states for the parameter ranges (26) and (27) correspond to

q = iκ E = E0 − α − 2γ cosh κ (28)

for ε0/γ < 0 and to

q = π + iκ E = E0 − α + 2γ cosh κ (29)

for ε0/γ > 0. Their energies lie outside the real-q band (18), either beyond the q = 0 edge (for
ε0/γ < 0) or beyond the q = π edge (for ε0/γ > 0). The equations determining the complex
wavenumbers, (28) and (29), are obtained by inserting these expressions (with ε = −2γ cos q)
in equation (17):

1

sinh |κ|
[
(2 cosh |κ| ± t)2 sinh(N − 1)|κ| − 2(2 cosh |κ| ± t) sinh(N − 2)|κ|

+ sinh(N − 3)|κ|] = 0 (30)
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where the upper sign corresponds to q = iκ and the lower sign to q = π + iκ . For analysing
the explicit solutions of these equations it is convenient to transform them into the exact forms(

e|κ| ± t

e−|κ| ± t

)2

= e−2(N−1)|κ| (31)

where the equation with the upper sign corresponds to q = iκ and ε0/γ < 0 and the equation
with the lower sign to q = π + iκ and ε0/γ > 0. For (N − 1)|κ|  1, equation (31) yields
two surface-state solutions for the domains (26) and (27) given by

e|κ| = −ε0

γ
for

ε0

γ
< 0 (32)

and

e|κ| = ε0

γ
for

ε0

γ
> 0. (33)

The two states have approximately the same energy given, for both signs of ε0/γ , by

E = E0 − α + γ

(
ε0

γ
+

γ

ε0

)
(34)

where we have used (28), (32) and (29), (33), respectively.
For completeness of our analytical discussion of surface states, it remains to verify that in

the domain (25) where we obtain only one surface-state root the equations (31) do indeed
yield one, rather than two, real solutions for each sign of ε0/γ . First we note that the
asymptotic solutions (32) and (33) are not valid in the intervals (25): since in these intervals
|ε0/γ | = 1 + O(1/N), equations (32) and (33) would correspond to values |κ| = O(1/N)

which are incompatible with the asymptotic condition (N − 1)|κ|  1 for these solutions.
The existence of a single solution of (31) in the domain (25) may be demonstrated by solving
(31) as a second-order algebraic equation for t = ε0/γ . This yields

ε0

γ
= ∓ 1

sinh(N − 1)|κ|
[

sinh N |κ| ±
√

cosh 2|κ| − 1

2

]
(35)

where the upper sign corresponds to values ε0/γ < 0 and the lower sign to values ε0/γ > 0.
For |κ| ⇀ 0 this expression reduces to the values ε0/γ = ∓1 and ε0/γ = ∓(N + 1)/(N − 1),
as expected since they are the threshold values at which surface states of the two different
origins first appear near q = 0 (for ε0/γ < 0) and near q = π (for ε0/γ > 0), as discussed
above. By expanding (35) to first order in |κ|, one then easily verifies that for values of ε0/γ

near the boundaries of the intervals (25), one of the two solutions is rejected in all cases because
it corresponds to a negative value of |κ|.

Finally we make explicit the form of the amplitudes at sites n for the surface-state
wavefunctions corresponding to the complex wavenumbers q = iκ and q = π + iκ given
by (32) and (33), respectively. On putting q = iκ in (19) and using (32), the amplitudes for
the surface state near the q = 0 edge reduce exactly to

an = e−(n−1)|κ|a1 n = 2, 3, . . . , N (36)

i.e. they are exponentially damped away from the site n = 1 where the iteration of (1) and
(2), (3) was started. Similarly, for q = π + iκ , with κ defined by (33), equation (19) reduces to

an = (−1)n−1e−(n−1)|κ|a1 n = 2, 3, . . . , N. (37)

Alternative equivalent forms of (36), (37) are obtained by replacing the factor exp[−(n−1)|κ|]
by (−ε0/γ )−(n−1) and (ε0/γ )−(n−1), respectively.
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4. Discussion and concluding remarks

We conclude by comparing our results with those obtained by Goodwin [5] and by commenting
further on his approach.

In section 3 we have identified four distinct domains (24)–(27) of (positive and negative)
values of the parameter ε0/γ for which the number and/or the origins of surface eigenstates
of the chain are different. In the domain −1 < ε0/γ < 1 the secular equation yields N

real eigenstate roots corresponding to Bloch-like bulk states, in agreement with Goodwin [5],
provided that one excludes his spurious roots q = 0 and q = π . The energy eigenvalues in this
domain are bounded by the band edges E = E0 − α ± 2γ in (4) and (13), which, however, do
not correspond to roots of (21). These bounds of the energy spectrum of a finite chain have been
discussed earlier (for ε0 = 0) [13], using a continued-fraction analysis of Brillouin–Wigner
perturbation theory. In the domain (25), there exists a single complex root corresponding to
a surface eigenstate, while in the domains (26) and (27), we find two surface-state solutions
of different origins. In contrast, by approximating (N + 1)/(N − 1) by unity, Goodwin [5]
obtains two surface-state solutions for ε0/γ < −1 (we recall that the Goodwin parameter
ε0/γ corresponds to our −ε0/γ ) but does not identify their distinct origins demonstrated in
section 3. Also, his analysis is restricted to negative ε0/γ and requires distinguishing between
even and odd numbers of atomic sites N , unlike the discussion above.

Next we compare our amplitudes (36) and (37) of the surface-state wavefunctions with
Goodwin’s results [5]. While the expressions (36), (37) decay exponentially at sites away from
our reference site n = 1, Goodwin’s surface-state wavefunctions have the form of a linear
combination of two states, one which decays exponentially away from site 1 and another one
which decays exponentially from site N . This seems rather artificial since for N  1 the two
ends of the chain are decoupled, so a surface state localized at n = 1 should be independent
of a state localized at n = N .

Goodwin’s solution of (1) and (2), (3) consists in writing an as a linear combination of
two linearly independent plane waves (solutions of (1)):

an = (−1)n(Aeinq + Be−inq) n = 1, 2, . . . , N (38)

satisfying the boundary conditions (2), (3). While this procedure yields, of course, the correct
secular equation, Goodwin’s claim that the amplitudes (38) vanish for the roots q = 0 (and
q = π ) of this equation is actually incorrect. To show this, we observe that the general
solution of the system (1) and (2), (3) is given in terms of an arbitrary value of one of the an,
say a1, rather than in terms of an arbitrary value of e.g. B in (38) as implicitly assumed by
Goodwin. Therefore B has to be re-expressed in terms of a1, which, on inserting the ratio
A/B = (γ − ε0e−iq)(ε0eiq − γ )−1 obtained from (2) [5] in equation (38) for n = 1, yields

B = i

2γ sin q
(ε0eiq − γ )a1. (39)

This expression displays the overall factor 1/sin q arising naturally in our transfer matrix
solution (19). As discussed above, this factor causes the amplitudes an to be finite for the roots
q = 0 and q = π of the secular equation (17), contrary to Goodwin’s claim [5].

Finally, by means of a crude estimate of his parameter ε0/γ for a copper lattice, using
Slater orbitals, Goodwin obtained a negative value slightly exceeding −1. This appears to be
one of the reasons why he restricted consideration to negative ε0/γ in his study of the roots
of the secular equation for the eigenvalues of the chain. However, with sophisticated modern
computing techniques it should be possible to obtain more accurate values for the Coulomb
and overlap integrals. Also, the existence of systems where ε0/γ would be positive cannot be
ruled out a priori.
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